Contents

Why Mathematics? .. 1
Mathematics at DePaul .. 1
Student Resources, Activities & Organizations 2
Student Organizations .. 4
Scholarships ... 5
Student Awards & Prizes .. 5
B.A./B.S. Mathematical Sciences Overview 6
B.A. Mathematical Sciences ... 7
Common Core .. 7
Concentrations ... 8
 Actuarial Science ... 8
 Applied & Computational Mathematics 10
 Financial Mathematics ... 12
 Individualized Concentration 13
 Pure Mathematics .. 14
 Quantitative Analysis & Operations Research 16
 Statistics .. 17
B.S. Mathematics & Computer Science 18
B.A./B.S. Secondary Education Mathematics 22
Combined Bachelor’s/Master’s Degrees 26
Minors ... 28
 Mathematics Minor .. 28
 Statistics Minor ... 29
Course Descriptions ... 30
Prerequisite Charts ... 36
Directory .. 38
Quick Connections .. 41

Copyright 2014. All rights reserved. DePaul University, Chicago, Illinois.
Why Mathematics?

The mathematician’s patterns, like the painter’s or the poet’s, must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. —G.H. Hardy

Mathematics, as a study of patterns—both practical and abstract—involves analytical thought, logical reasoning, problem solving skills, and precise communication. Because of its power and versatility, mathematics has been crowned “Queen of the Sciences.” There is no field of scientific inquiry that does not express itself through the language of mathematics. The kinds of analytics and logical thinking skills that one develops while studying mathematics are precisely the skills that recruiters look for in potential employees. Jobs involving significant mathematical background also consistently rank near the top of the list in annual career surveys. In CareerCast.com’s 2014 rankings of the 200 best jobs, the four best jobs were: (#1) Mathematician, (#2) University Professor (Tenured), (#3) Statistician, (#4) Actuary. Other highly-ranked jobs requiring a large amount of mathematical background included Software Engineer (#7), Computer Systems Analyst (#8), Biomedical Engineer (#12), Financial Planner (#16), Economist (#18), Petroleum Engineer (#20), Meteorologist (#21), Physicist (#22), Computer Programmer (#26), Pharmacist (#33), Astronomer (#36), Geologist (#36), and Accountant (#40).

Other careers that depend deeply on mathematics:

<table>
<thead>
<tr>
<th>Actuarial and Insurance</th>
<th>Teaching/Academic Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuary, Insurance Underwriter, Accountant, Investment Analyst, Benefits Specialist, Financial Planner, Banker</td>
<td>Teacher/Junior High/High School, College or University Professor</td>
</tr>
<tr>
<td>Health</td>
<td>Statistics</td>
</tr>
<tr>
<td>Ecologist, Biomathematician, Biomedical Engineer</td>
<td>Analytical Statistician, Theoretical Statistician, Demographer, Quality Control Analyst, Econometrician, Psychometrician, Biometrician</td>
</tr>
<tr>
<td>Computer & Information Sciences</td>
<td>Business/Industry</td>
</tr>
</tbody>
</table>

An undergraduate degree in mathematics provides an excellent foundation for those interested in pursuing advanced degrees in mathematics or other more specialized professions, some of which are listed above. Mathematics is also an outstanding pre-professional degree for students considering allied fields such as law, business administration, and medicine.

Mathematics at DePaul

The department offers a BA or BS in Mathematics and a BS in Mathematics & Computer Science, as well as a minor in either Mathematics or Statistics. It also offers Combined Bachelor of Mathematical Sciences (BA/BS) and Master of Science Degrees in Applied Mathematics (MS), Applied Statistics (MS), Pure Mathematics (MS), and Secondary Education Mathematical Sciences (MEd), all of which allow completion of a bachelor’s degree and a graduate degree in five years.
Mathematics Tutoring & Computer Labs

The department maintains two separate mathematics tutoring labs, one on each main campus, to offer free tutoring to undergraduates enrolled in a math class. On the Lincoln Park Campus the lab is located in SAC 521, in the heart of the Department of Mathematical Sciences. Tutoring is generally available on certain weekend days in O’Connell 300. In the Loop, the tutoring lab is in Lewis Hall #1662. On both campuses, students can come on a drop-in basis during the regular school year, any week of classes except finals week. There they can get tutoring from math students who are often mathematics majors. The Lab schedules are generally posted online and outside the door, and at http://csh.depaul.edu/departments/mathematical-sciences/resources/Pages/default.aspx. These spaces also make computing available through a limited number of networked PCs. In addition, the PC labs in O’Connell 300 (LPC) are generally available for student use when classes are not taking place there.

Student Employment—Tutoring & Grading

The Mathematics Labs listed above offer opportunities for students to engage in tutoring their fellow students as paid lab tutors.

There is also the opportunity for students who have completed Calculus to grade homework for various lower- and upper-level mathematics courses. Students are paid to work with faculty members to evaluate the homework papers their classes.

For more information or to sign up for either math tutoring or grading, please contact Nydia Rodriguez (nrodrigu@depaul.edu, 773-325-4878).

Mathematics Tutoring Resource Bank

Various online resources are available for students who are enrolled, or intend to enroll, in math courses leading up to and including calculus. These free practice materials can be used by students needing more practice in courses they are currently taking or preparing for courses they will be taking in the future. These resources can be found at csh.depaul.edu/departments/mathematical-sciences/resources/tutoring/Pages/default.aspx.

Internships

Students enrolled in the Actuarial Science, Statistics, or Financial Mathematics concentrations are heartily encouraged to participate in the department’s internship program, which facilitates internships at many local well-known companies such as Allstate, North American, Blue Cross Blue Shield, CNA, Capital One, and Zurich. Internship fairs are held periodically which give students an opportunity to meet with representative of these and other companies, and explore the possibilities for corporate internships.

Interested students should contact Carole Bernet (cbernet1@depaul.edu, 773-325-1343), or the Career Center (careercenter.depaul.edu, DPC: 312.362.8437, LPC: 773.325.7431).
Student Research

The faculty view research as an integral part of each student’s academic preparation at both the graduate and undergraduate levels. Consequently many on-campus research opportunities are provided for students. Research projects vary in nature and scope, and often take place during the summer and carry significant amounts of financial support. In the past, students have participated in research that has led to presentations at conferences and even publications in professional journals.

Further questions about student research should be sent to CSHResearch@depaul.edu. You may also explore research opportunities by either calling 773-325-8490 or emailing CSHAdvising@depaul.edu.

Advising

When you declare a major in Mathematics (no matter the concentration), you will be assigned a department faculty member as an academic advisor. If you do not know who your advisor is, check Campus Connect (campusconnect.depaul.edu). If you do not have an advisor assigned, contact Dr. Ahmed I. Zayed, the Department Chair, at (773) 325-7808 or at azayed@depaul.edu.

It is recommended that mathematics majors meet with a mathematics advisor at least twice a year.

Putnam Competition

The William Lowell Putnam Mathematical Competition is a highly prestigious (and legendarily difficult) mathematics examination administered each year by the Mathematical Association of America. The department holds an ongoing series of coaching sessions to help students prepare for the exam, and each year fields a team to represent DePaul.

Student Accomplishments

The department is very proud of the accomplishments of its students, whose recent achievements include:

Student Publications: Students in the department authored or coauthored four papers which have been published in peer-reviewed journals such as DePaul Discoveries and College Mathematics Journal.

Conference and REU Participation: Recent undergraduates have participated at conferences or REUs (Research Experiences for Undergraduates) at the University of Chicago, Carleton College, and Rose-Hulman Institute of Technology.

Putnam Exam: In the 2013 exam, Matthew McGrail was ranked 266 out of 4113 participants worldwide, a remarkable achievement.

Graduate School: After completing their undergraduate degree at DePaul University, students have recently gone on to pursue graduate work at University of Oregon, Purdue University, Northwestern University, New York University, University of Illinois at Chicago, and the University of Notre Dame.

Employment: As examples, some recent graduates have been hired at firms such as CNA, Allstate, and Amazon.com, while others have secured positions at organizations such as Math for America and Teaching for America.
Student Organizations

Actuarial Club

The DePaul Actuarial Science Club is an organization of undergraduate and graduate students at DePaul University who are interested in Actuarial Science. The club seeks to mentor interested students by:

- Inviting professionals to speak about the Actuarial industry.
- Helping students network with their peers and industry figureheads.
- Organizing study groups for the Society of Actuaries (SOA) exams.

For the most up-to-date information on the Actuarial Club, write to depaulactuarialclub@gmail.com, or visit orgsanddepartments.orgsync.com/org/depasc/home.

Math Club

The DePaul Math Club typically meets at lunchtime each Friday during the academic year, and provides fun and interesting activities and programs to benefit all students of mathematics. The club features talks by faculty and students on interesting mathematical topics outside of the typical course content, in addition to regular fun features such as an integration bee and problem-solving sessions. For the most up-to-date information on the Math Club, write to depaulmathclub@gmail.com, or contact Nick Ramsey (nramsey@depaul.edu).

STATCOM Chicago

Statistics in the Community (STATCOM) is an organization of graduate statistics students that offers pro bono statistical consulting services to local businesses and organizations for the purpose of creating a culture of service while engaging students in consulting and leadership work. Founded at Purdue University in 2001, the STATCOM network now extends nationwide.

STATCOM Chicago was launched at DePaul University in 2008. Today the group serves clients in the Chicagoland area with the help of students from the Illinois Institute of Technology, the University of Illinois at Chicago, and Rosalind Franklin University.

For the most up-to-date information on STATCOM Chicago, visit their website at orgsync.com/48609/chapter, or write to statcomchicagodepaul@gmail.com.

Memberships in Professional Organizations

Students are encouraged to take advantage of the opportunities offered by professional organizations that provide valuable resources such as job services, networking, and mathematical discussion groups. Special student rates are often available. These organizations include:

- American Mathematical Society—ams.org
- Mathematical Association of America—maa.org
- SACNAS—Society for the Advancement of Chicanos/Hispanics & Native Americans in Science—sacnas.org
- Society for Industrial & Applied Mathematics—siam.org
Scholarships

Student Scholarships
Several scholarships are available to undergraduate mathematics students at DePaul. These vary widely in monetary amounts and eligibility requirements, but those available to mathematics students include:

- Effron Family Scholarship for Pure Mathematics
- Richard K. Matthei Memorial Scholarship
- Rev. Charles F. Shelby Endowed Scholarship
- Briefs-Waters Memorial Endowed Scholarship
- The James & Mary Schaefer Liberal Arts & Sciences Endowed Scholarship

CSH Scholarships
Other scholarships for mathematics majors or for general science, are also made available through the Department of Mathematical Sciences or through the College of Science & Health. For more information, contact Yevgenia Kashina (ykashina@depaul.edu, 773-325-1351) or visit csh.depaul.edu/centers-and-institutes/stem/programs/undergraduate-scholarships.

Student Awards

Walter A. Pranger Memorial Prize in Mathematical Sciences
The Walter A. Pranger Memorial Prize recognizes outstanding undergraduate scholarship in the mathematical sciences. The prize takes its name Dr. Walter A. Pranger, Professor of Mathematical Sciences at DePaul, honoring his 35-year commitment to excellence in teaching at DePaul University. The prize awards at least $500 annually to a graduating senior. To be eligible, a student must:

- Be a graduating senior with strong academic credentials in mathematics, education, computer science, commerce or music
- Demonstrate an interest in advancing the study of mathematics
- Demonstrate an interest in applying mathematics in innovative ways

Outstanding Mathematics Student
The Outstanding Mathematics Student Award goes to an outstanding graduating senior, based on GPA in all mathematics classes taken here at DePaul, as well as other factors.
The Department of Mathematical Sciences offers courses in pure and applied mathematics to help students reach a wide variety of intellectual, academic, and career goals.

Many students come to the department to obtain the mathematical background needed to be successful in programs in the natural sciences, computer science, social sciences, and business. Such students may choose to supplement their major in their home department by obtaining a minor in mathematics.

Other students come to the department seeking a program leading to an undergraduate or graduate degree in one of the mathematical sciences. Undergraduate students majoring in mathematical sciences may choose one of seven areas of concentration:

- **Actuarial Science**—Prepares students to work for insurance or pension consulting firms, and government.
- **Applied and Computational Mathematics**—Prepares students for employment as quantitative analysts, computational scientists, and applied mathematicians, as well as continued study of applied or discrete mathematics at the graduate level.
- **Financial Mathematics**—This concentration is a Mathematics Major that is attached to a Finance Minor. It includes courses that are relevant to contemporary financial mathematical modeling, along with courses in Finance and their prerequisites.
- **Individualized Concentration**—Students may consult with a mathematics faculty advisor and the department chair to create an individualized program of study leading to a degree in mathematics.
- **Pure Mathematics**—Provides a broad mathematical exposure for students who are interested in studying and/or doing mathematical research at the graduate level.
- **Quantitative Analysis and Operations Research**—Provides students with the mathematical background to work in finance, computer applications, and production scheduling and forecasting.
- **Statistics**—Offers students a solid foundation in probability and statistics. Statisticians are employed by government, industry, marketing research companies, and consulting firms to design surveys and experiments and to analyze statistical data.

A thesis option is available to mathematics majors who wish to pursue an extended independent project related to a theoretical or applied focus of the program. Students would work under the guidance of a faculty mentor. At least 4 credits must be completed over one or two quarters prior to the thesis submission. Interested students are strongly encouraged to enroll in MAT 390 during their junior year.

B.A./B.S. Mathematical Sciences Overview

<table>
<thead>
<tr>
<th>Requirement</th>
<th>BA Mathematics</th>
<th>BS Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Studies Requirements</td>
<td>80 hours</td>
<td>80 hours</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>32-36 hours</td>
<td>48-52 hours</td>
</tr>
<tr>
<td>Major Concentration Requirements</td>
<td>24-28 hours</td>
<td>24-28 hours</td>
</tr>
<tr>
<td>Open Electives</td>
<td>48-56 hours</td>
<td>32-40 hours</td>
</tr>
<tr>
<td>Total hours required</td>
<td>192 hours</td>
<td>192 hours</td>
</tr>
</tbody>
</table>
B.A./B.S. Mathematical Sciences

Major Requirements

Common Core

- Choose one of the following three course Calculus sequences:
 - Sequence One
 - MAT 150 CALCULUS I
 - MAT 151 CALCULUS II
 - MAT 152 CALCULUS III
 - Sequence Two
 - MAT 147 CALCULUS WITH INTEGRATED PRECALCULUS I
 - MAT 148 CALCULUS WITH INTEGRATED PRECALCULUS II
 - MAT 149 CALCULUS WITH INTEGRATED PRECALCULUS III
 - Sequence Three
 - MAT 160 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS I
 - MAT 161 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS II
 - MAT 162 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS III
 - Sequence Four
 - MAT 170 CALCULUS I WITH SCIENTIFIC APPLICATIONS
 - MAT 171 CALCULUS II WITH SCIENTIFIC APPLICATIONS
 - MAT 149, MAT 152 OR MAT 162

- MAT 260 MULTIVARIABLE CALCULUS I
- MAT 261 MULTIVARIABLE CALCULUS II
- MAT 262 LINEAR ALGEBRA
- One of the following options
 - MAT 215 INTRODUCTION TO MATHEMATICAL REASONING
 - Discrete Mathematics Sequence
 - MAT 140 DISCRETE MATHEMATICS I
 - MAT 141 DISCRETE MATHEMATICS II
- CSC 241 INTRODUCTION TO COMPUTER SCIENCE I, or a more advanced course in any programming language.

- (B.S. only) Students must earn at least 16 quarter hours as four courses in the natural or computer sciences, or in GEO 241, GEO 243, or GEO 345.

Concentration Requirements

Students must also complete the requirements from one of the following concentrations: Pure Mathematics; Statistics; Actuarial Science; Financial Mathematics; Quantitative Analysis and Operations Research; Applied and Computational Mathematics; or Individualized.

If the student chooses to declare more than one Mathematical Sciences concentration, then the student must complete the requirements for each concentration, and take at least three additional 300-level courses overall. For example, a student earning two concentrations would have taken at least nine 300-level courses, and a student earning three concentrations would have taken at least twelve 300-level courses.
Actuarial Science Concentration

Course Requirements

- **Required Courses**
 - MAT 351 PROBABILITY AND STATISTICS I
 - MAT 352 PROBABILITY AND STATISTICS II
 - MAT 353 PROBABILITY AND STATISTICS III
 - MAT 361 ACTUARIAL SCIENCE I
 - MAT 362 ACTUARIAL SCIENCE II
 - MAT 363 ACTUARIAL SCIENCE III

- **Open Electives**
 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

Recommended Mathematics Courses

- MAT 341 STATISTICAL METHODS USING SAS
- MAT 355 STOCHASTIC PROCESSES
- MAT 356 APPLIED REGRESSION ANALYSIS
- MAT 358 APPLIED TIME SERIES AND FORECASTING
- MAT 359 SIMULATION MODELS AND MONTE CARLO METHOD
- MAT 364 STOCHASTIC RISK MODELS
- MAT 367 CREDIBILITY THEORY
- MAT 368 MATHEMATICAL FINANCE

Additional Recommended Courses

- ACC 101 INTRODUCTION TO ACCOUNTING I
- ECO 105 PRINCIPLES OF MICROECONOMICS
- ECO 106 PRINCIPLES OF MACROECONOMICS
- FIN 310 INTRODUCTION TO FINANCE
- FIN 311 CORPORATE FINANCE
- FIN 320 MONEY AND BANKING
- FIN 330 INVESTMENTS: THEORY & PRACTICE
- FIN 335 PORTFOLIO MANAGEMENT
- FIN 362 RISK MANAGEMENT
- FIN 363 DERIVATIVES: PRICING & APPLICATIONS
Course Scheduling

- Unless otherwise specified, assume Calculus I-II-III in Y1 and MAT 260-1-2 in Y2.
- MAT 215 can be taken in any quarter of Y2. MAT 140(A/W)-141(W/S) may be taken in Y1 or Y2.
- MAT 140-141/215 is required for MAT 301, 302, 303, 310, 320, 335, 337, 340, 370, 372.
- CSC 241 is offered every quarter.
- MAT 385 has a programming prerequisite.
- JYEL Courses in the department are MAT 397 (Autumn-Winter) and MAT 390 (Spring).
- Thesis writers should take MAT 396 during the Autumn and/or Winter of Y4.
- Students who want to take MAT 368 need to take MAT 304, MAT 355, FIN 310, and FIN 320 first. FIN 310 requires ACC 101-102, or ECO 105-106, or MAT 135-137.

Sample Track A

<table>
<thead>
<tr>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>352</td>
<td>353</td>
</tr>
<tr>
<td>361</td>
<td>362</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>398</td>
<td>326</td>
</tr>
<tr>
<td>357</td>
<td>341</td>
<td>359</td>
</tr>
<tr>
<td>364</td>
<td>348</td>
<td>368</td>
</tr>
<tr>
<td>370</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td></td>
<td>358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td></td>
</tr>
</tbody>
</table>

Sample Track B

<table>
<thead>
<tr>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>352</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>362</td>
<td>363</td>
</tr>
<tr>
<td>356</td>
<td>398</td>
<td>326</td>
</tr>
<tr>
<td>357</td>
<td>341</td>
<td>359</td>
</tr>
<tr>
<td>364</td>
<td>348</td>
<td>368</td>
</tr>
<tr>
<td>370</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td></td>
<td>358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td></td>
</tr>
</tbody>
</table>

Key

- **Required**
- **Electives**
Applied & Computational Mathematics Concentration

The concentration in Applied and Computational Mathematics is intended for any student who enjoys mathematics, problem solving, and applications to solving practical problems in business, government, and science. The concentration is especially intended for students seeking a career as quantitative analysts, computational scientists, and applied mathematicians, and for those thinking of continuing the study of applied or discrete mathematics at the graduate level.

Course Requirements

- **CSC 242 INTRODUCTION TO COMPUTER SCIENCE II** or another approved computer science course.
- Three courses chosen from the following list:

 - MAT 302 COMBINATORICS
 - MAT 304 DIFFERENTIAL EQUATIONS
 - MAT 384 MATHEMATICAL MODELING
 - MAT 385 NUMERICAL ANALYSIS I
- Two additional courses chosen from among the above and the following list:

 - MAT 335 REAL ANALYSIS I
 - MAT 351 PROBABILITY AND STATISTICS I
 - MAT 352 PROBABILITY AND STATISTICS II
 - MAT 370 ADVANCED LINEAR ALGEBRA
 - MAT 381 FOURIER ANALYSIS AND SPECIAL FUNCTIONS
 - MAT 386 NUMERICAL ANALYSIS II
- One additional course chosen from among the above and the following list:

 - MAT 303 THEORY OF NUMBERS
 - MAT 310 ABSTRACT ALGEBRA I
 - MAT 311 ABSTRACT ALGEBRA II
 - MAT 330 METHODS OF COMPUTATION AND THEORETICAL PHYSICS I
 - MAT 331 METHODS OF COMPUTATION AND THEORETICAL PHYSICS II
 - MAT 336 REAL ANALYSIS II
 - MAT 337 COMPLEX ANALYSIS
 - MAT 340 TOPOLOGY
 - MAT 353 PROBABILITY AND STATISTICS III
 - MAT 355 STOCHASTIC PROCESSES
 - MAT 387 OPERATIONS RESEARCH I: LINEAR PROGRAMMING
 - MAT 388 OPERATIONS RESEARCH II: OPTIMIZATION THEORY
Students interested in graduate study in applied mathematics are encouraged to take MAT 335-336, 370, 385-386.

- **Open Electives**

 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

Course Scheduling

- Unless otherwise specified, assume Calculus I-II-III in Y1 and MAT 260-1-2 in Y2.
- MAT 215 can be taken in any quarter of Y2. MAT 140(A/W)-141(W/S) may be taken in Y1 or Y2.
- MAT 140-141/215 is required for MAT 301, 302, 303, 310, 320, 335, 337, 340, 370, 372.
- CSC 241 is offered every quarter.
- MAT 385 has a programming prerequisite.
- JYEL Courses in the department are MAT 397 (Autumn-Winter) and MAT 390 (Spring).
- Thesis writers should take MAT 396 during the Autumn and/or Winter of Y4.
- MAT 384, 381, 386, 387, and 388 are also options, but they are not offered with enough regularity to list by quarter. If one of these is not offered in a given year, a student may request an independent study.

<table>
<thead>
<tr>
<th></th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>261</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>302</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>Y3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>335</td>
<td>302</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>351</td>
<td>385</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>352</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>311</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>331</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>Y4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>335</td>
<td>398</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>351</td>
<td>302</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>352</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>311</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>331</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>355</td>
</tr>
</tbody>
</table>

Key

- **Required**
- **Choose One**
- **Choose Three**
- **Choose Two***
- **Choose One***

*Check Prerequisites
Financial Mathematics Concentration

This concentration is a Mathematics Major that is attached to a Finance Minor. It includes courses that are relevant to contemporary financial mathematical modeling, along with courses in Finance and their prerequisites. The Finance Minor is designed to complement the mathematics coursework.

Course Requirements

- In addition to completing a Finance Minor, the following mathematics courses are required:
 - MAT 304 DIFFERENTIAL EQUATIONS or MAT 385 NUMERICAL ANALYSIS I
 - MAT 351 PROBABILITY AND STATISTICS I
 - MAT 352 PROBABILITY AND STATISTICS II
 - MAT 353 PROBABILITY AND STATISTICS III
 - MAT 355 STOCHASTIC PROCESSES
 - MAT 368 MATHEMATICAL FINANCE

- Open Electives

 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

- Finance Minor requirements

 - ACC 101 INTRODUCTION TO ACCOUNTING I
 - ACC 102 INTRODUCTION TO ACCOUNTING II
 - ECO 105 PRINCIPLES OF MICROECONOMICS
 - ECO 106 PRINCIPLES OF MACROECONOMICS
 - FIN 202 QUANTITATIVE REASONING
 - FIN 310 INTRODUCTION TO FINANCE
 - FIN 311 CORPORATE FINANCE
 - FIN 320 MONEY AND BANKING
 - FIN 330 INVESTMENTS: THEORY & PRACTICE

- Two electives chosen from the following list:
 - FIN 313 INVESTMENT BANKING
 - FIN 323 COMMERCIAL BANKING
 - FIN 333 FINANCIAL STATEMENTS ANALYSIS
 - FIN 335 PORTFOLIO MANAGEMENT
 - FIN 340 INTERNATIONAL FINANCE
 - FIN 362 RISK MANAGEMENT
 - FIN 363 DERIVATIVES: PRICING & APPLICATIONS
 - FIN 380 CASES IN FINANCIAL DECISION MAKING
 - FIN 393 FINANCE INTERNSHIP
 - FIN 395 INVESTMENT SEMINAR
 - FIN 398 SPECIAL TOPICS
 - FIN 399 INDEPENDENT STUDY
Additional Recommended Courses
- MAT 341 STATISTICAL METHODS USING SAS
- MAT 370 ADVANCED LINEAR ALGEBRA
- MAT 358 APPLIED TIME SERIES AND FORECASTING
- MAT 356 APPLIED REGRESSION ANALYSIS

Course Scheduling
- Unless otherwise specified, assume Calculus I-II-III in Y1 and MAT 260-1-2 in Y2.
- MAT 215 can be taken in any quarter of Y2. MAT 140(A/W)-141(W/S) may be taken in Y1 or Y2.
- MAT 140-141/215 is required for MAT 301, 302, 303, 310, 320, 335, 337, 340, 370, 372.
- CSC 241 is offered every quarter.
- MAT 385 has a programming prerequisite.
- JYEL Courses in the department are MAT 397 (Autumn-Winter) and MAT 390 (Spring).
- Thesis writers should take MAT 396 during the Autumn and/or Winter of Y4.

<table>
<thead>
<tr>
<th></th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2</td>
<td>260</td>
<td>261</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>Y3</td>
<td>351</td>
<td>352</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>385</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>Y4</td>
<td>355</td>
<td>304</td>
<td>385</td>
</tr>
</tbody>
</table>

Key
- Required
- Choose One

Individualized Mathematics Concentration

Students may consult with a mathematics faculty advisor and the department chair to create an individualized program of study leading to a degree in mathematics.
Pure Mathematics Concentration

Course Requirements

• Three courses to be chosen from the following list
 MAT 310 ABSTRACT ALGEBRA I
 MAT 311 ABSTRACT ALGEBRA II
 MAT 335 REAL ANALYSIS I
 MAT 336 REAL ANALYSIS II

• Three additional mathematics courses from the following list
 MAT 301 HISTORY OF MATHEMATICS
 MAT 302 COMBINATORICS
 MAT 303 THEORY OF NUMBERS
 MAT 311 ABSTRACT ALGEBRA II
 MAT 312 ABSTRACT ALGEBRA III
 MAT 320 GEOMETRY I
 MAT 321 GEOMETRY II
 MAT 336 REAL ANALYSIS II
 MAT 337 COMPLEX ANALYSIS
 MAT 304 DIFFERENTIAL EQUATIONS
 MAT 340 TOPOLOGY
 MAT 348 APPLIED STATISTICAL METHODS
 MAT 351 PROBABILITY AND STATISTICS I
 MAT 352 PROBABILITY AND STATISTICS II
 MAT 353 PROBABILITY AND STATISTICS III
 MAT 370 ADVANCED LINEAR ALGEBRA
 MAT 372 LOGIC AND SET THEORY
 MAT 385 NUMERICAL ANALYSIS I
 MAT 386 NUMERICAL ANALYSIS II (CROSS-LISTED WITH MAT 486 & CSC 386/486)

• Open Electives
 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

Recommended Course Selections

For students interested in graduate study in mathematics:
 MAT 310 ABSTRACT ALGEBRA I
 MAT 311 ABSTRACT ALGEBRA II
 MAT 312 ABSTRACT ALGEBRA III
 MAT 335 REAL ANALYSIS I
 MAT 336 REAL ANALYSIS II
 MAT 337 COMPLEX ANALYSIS
For students interested in graduate study in economics, finance, or statistics:

MAT 351 PROBABILITY AND STATISTICS I
MAT 352 PROBABILITY AND STATISTICS II
MAT 353 PROBABILITY AND STATISTICS III
A&S 491 ADMINISTRATIVE THEORY AND BEHAVIOR
MAT 336 REAL ANALYSIS II

Course Scheduling

- Unless otherwise specified, assume Calculus I-II-III in Y1 and MAT 260-1-2 in Y2.
- MAT 215 can be taken in any quarter of Y2. MAT 140(A/W)-141(W/S) may be taken in Y1 or Y2.
- MAT 140-141/215 is required for MAT 301, 302, 303, 310, 320, 335, 337, 340, 370, 372.
- CSC 241 is offered every quarter.
- MAT 385 has a programming prerequisite.
- JYEL Courses in the department are MAT 397 (Autumn-Winter) and MAT 390 (Spring).
- Thesis writers should take MAT 396 during the Autumn and/or Winter of Y4.
- MAT 346 is also an option, but is not offered with enough regularity to list by quarter. If it is not offered in a given year, a student may request an independent study.

<table>
<thead>
<tr>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>261</td>
<td>262</td>
</tr>
<tr>
<td>215</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>301</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>302</td>
<td>304</td>
</tr>
<tr>
<td>Y3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>301</td>
<td>303</td>
</tr>
<tr>
<td>335</td>
<td>302</td>
<td>304</td>
</tr>
<tr>
<td>320</td>
<td>321</td>
<td>312</td>
</tr>
<tr>
<td>370</td>
<td>348</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>311</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>Y4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>398</td>
<td>303</td>
</tr>
<tr>
<td>351</td>
<td>301</td>
<td>304</td>
</tr>
<tr>
<td>370</td>
<td>302</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>321</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>352</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>385</td>
<td></td>
</tr>
<tr>
<td></td>
<td>311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>336</td>
<td></td>
</tr>
</tbody>
</table>

Key

- Required
- Choose One
- Choose Three*
- Choose One

*Check Prerequisites
Quantitative Analysis and Operations Research Concentration

Course Requirements

- **Required Courses**
 - MAT 351 PROBABILITY AND STATISTICS I
 - MAT 352 PROBABILITY AND STATISTICS II
 - MAT 353 PROBABILITY AND STATISTICS III

- **Three courses from the following list**
 - MAT 356 APPLIED REGRESSION ANALYSIS
 - MAT 358 APPLIED TIME SERIES AND FORECASTING
 - MAT 387 OPERATIONS RESEARCH I: LINEAR PROGRAMMING
 - MAT 388 OPERATIONS RESEARCH II: OPTIMIZATION THEORY

- **Open Electives**

 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

 Additional Recommended Courses

 - ACC 101 INTRODUCTION TO ACCOUNTING I
 - ACC 102 INTRODUCTION TO ACCOUNTING II
 - ECO 105 PRINCIPLES OF MICROECONOMICS
 - ECO 106 PRINCIPLES OF MACROECONOMICS
 - FIN 310 INTRODUCTION TO FINANCE
 - FIN 330 INVESTMENTS: THEORY & PRACTICE
 - FIN 335 PORTFOLIO MANAGEMENT

 Course Scheduling

- Unless otherwise specified, assume Calculus I-II-III in Y1 and MAT 260-1-2 in Y2.
- MAT 215 can be taken in any quarter of Y2. MAT 140(A/W)-141(W/S) may be taken in Y1 or Y2.
- MAT 140-141/215 is required for MAT 301, 302, 303, 310, 320, 335, 337, 340, 370, 372.
- CSC 241 is offered every quarter.
- MAT 385 has a programming prerequisite.
- JYEL Courses in the department are MAT 397 (Autumn-Winter) and MAT 390 (Spring).
- Thesis writers should take MAT 396 during the Autumn and/or Winter of Y4.

<table>
<thead>
<tr>
<th></th>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2</td>
<td>260</td>
<td>261</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td>Y3</td>
<td>351</td>
<td>352</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*387</td>
<td>*388</td>
</tr>
<tr>
<td>Y4</td>
<td>356</td>
<td>358</td>
<td>*388</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*387</td>
<td></td>
</tr>
</tbody>
</table>

Key

<table>
<thead>
<tr>
<th>Required</th>
<th>Choose One</th>
<th>Choose Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biennial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16
Statistics Concentration

Course Requirements

- **Required Courses**
 - MAT 351 PROBABILITY AND STATISTICS I
 - MAT 352 PROBABILITY AND STATISTICS II
 - MAT 353 PROBABILITY AND STATISTICS III
 - MAT 341 STATISTICAL METHODS USING SAS
 - MAT 356 APPLIED REGRESSION ANALYSIS
 - MAT 326 SAMPLE SURVEY METHODS or MAT 328 DESIGN OF EXPERIMENTS

- **Open Electives**

 Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

Additional Recommended Courses

- MAT 354 MULTIVARIATE STATISTICS
- MAT 355 STOCHASTIC PROCESSES
- MAT 357 NONPARAMETRIC STATISTICS
- MAT 358 APPLIED TIME SERIES AND FORECASTING
- MAT 335 REAL ANALYSIS I
- MAT 336 REAL ANALYSIS II
- MAT 370 ADVANCED LINEAR ALGEBRA
- MAT 385 NUMERICAL ANALYSIS I
- MAT 386 NUMERICAL ANALYSIS II

Students interested in graduate study in mathematical statistics are encouraged to take the following:

- MAT 335 REAL ANALYSIS I
- MAT 336 REAL ANALYSIS II

Course Scheduling

- MAT 348 only requires Calculus II, so it can be taken any time after Y1, but we recommend taking it in Y3 or Y4.

- All other notes are the same as those listed on previous page.
B.S. Mathematics & Computer Science
Overview

The B.S. in Math and Computer Science is a joint degree between the College of Computing and Digital Media and the Department of Mathematics. It provides challenging opportunities to exceptional students with an interest in the highly theoretical nexus of math and computer science. Mathematics is a key element to the theory and practice of computer science and technology:

- Number theory forms the basis for encryption algorithms for messages sent over the Internet.
- Facts from projective geometry and multivariable calculus underlie the computer algorithms that control computer animation.
- Properties of abstract groups are instrumental in correcting transmission errors that occur when information is sent from one computer to another.
- Graph theory and combinatorics are used to create algorithms for Internet search engines and analyze Internet routing protocols.

This program is intended to appeal to academically talented students. It is designed to prepare them for graduate study in various areas of computer science such as theoretical computer science, graphics, data analysis, artificial intelligence, and computational methods and in areas in applied mathematics such as numerical analysis or discrete mathematics. The program is also designed to prepare students to compete for the more theoretical complex jobs found in computer software development.

Students in the program will explore a broad range of fields including:

- Theory of computation
- Computational mathematics
- Artificial intelligence
- Data analysis
- Graphics
- Computer vision

It is highly recommended that students concentrate on one or two areas for their advanced classes to achieve depth, but they are not required to do so. Faculty advisors are available to assist students in their selection.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>BA Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Studies Requirements</td>
<td>80 hours</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>56 hours</td>
</tr>
<tr>
<td>Major Concentration Requirements</td>
<td>28 hours</td>
</tr>
<tr>
<td>Open Electives</td>
<td>28 hours</td>
</tr>
<tr>
<td>Total hours required</td>
<td>192 hours</td>
</tr>
</tbody>
</table>
B.S. Mathematics & Computer Science
Major Requirements

Course Requirements

- CSC 241 INTRODUCTION TO COMPUTER SCIENCE I
- CSC 242 INTRODUCTION TO COMPUTER SCIENCE II
- CSC 300 DATA STRUCTURES IN JAVA I
- CSC 301 DATA STRUCTURES IN JAVA II
- CSC 321 DESIGN AND ANALYSIS OF ALGORITHMS
- CSC 373 COMPUTER SYSTEMS I
- CSC 374 COMPUTER SYSTEMS II
- CSC 394 SOFTWARE PROJECTS (Capstone)
 or GPH 395 COMPUTER GRAPHICS SENIOR PROJECT (Capstone)
 or MAT 398 SENIOR CAPSTONE SEMINAR (Capstone)
- MAT 140 DISCRETE MATHEMATICS I
- MAT 141 DISCRETE MATHEMATICS II
- Choose one of the following three course Calculus sequences:
 ◦ Sequence One
 * MAT 150 CALCULUS I
 * MAT 151 CALCULUS II
 * MAT 152 CALCULUS III
 ◦ Sequence Two
 * MAT 147 CALCULUS WITH INTEGRATED PRECALCULUS I
 * MAT 148 CALCULUS WITH INTEGRATED PRECALCULUS II
 * MAT 149 CALCULUS WITH INTEGRATED PRECALCULUS III
 ◦ Sequence Three
 * MAT 160 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS I
 * MAT 161 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS II
 * MAT 162 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS III
 ◦ Sequence Four
 * MAT 170 CALCULUS I WITH SCIENTIFIC APPLICATIONS
 * MAT 171 CALCULUS II WITH SCIENTIFIC APPLICATIONS
 * MAT 149, MAT 152 OR MAT 162
- MAT 260 MULTIVARIABLE CALCULUS I
- MAT 262 LINEAR ALGEBRA
- 3 CDM Major Electives
- 3 MAT Major Electives
- 1 CDM or MAT Major Elective
B.S. Mathematics & Computer Science Continued...

- **Major Electives**
 Students must take 7 Major Field electives chosen from the grouped list below. Of these, 3 must be CDM courses and 3 must be MAT courses, and 1 could be either a CDM or MAT course.
 Students must earn a grade of C- or higher in all major elective courses.
 It is recommended that students concentrate on one or two areas for their advanced classes to achieve depth, but they are not required to do so. Students are strongly encouraged to discuss course selection with an advisor. Students may wish to arrange with a professor to take an independent study or a research experience (MAT 399 or CSC 399 or IT 300) in order to explore a subject more deeply than is possible in a scheduled course.

Theory of Computation
The courses in the theory area explore the mathematical and logical foundations of computer science.

- MAT 302 COMBINATORICS
- MAT 303 THEORY OF NUMBERS
- MAT 351 PROBABILITY AND STATISTICS I
- MAT 310 ABSTRACT ALGEBRA I
- MAT 311 ABSTRACT ALGEBRA II
- MAT 312 ABSTRACT ALGEBRA III
- MAT 335 REAL ANALYSIS I
- MAT 372 LOGIC AND SET THEORY
- CSC 235 PROBLEM SOLVING
- CSC 372 PROBLEM SOLVING FOR CONTESTS
- CSC 333 CRYPTOLOGY
- CSC 344 AUTOMATA THEORY AND FORMAL GRAMMARS
- CSC 347 CONCEPTS OF PROGRAMMING LANGUAGES
- CSC 348 INTRODUCTION TO COMPILER DESIGN
- CSC 358 SYMBOLIC PROGRAMMING
- CSC 387 OPERATIONS RESEARCH I: LINEAR PROGRAMMING
 or MAT 387 OPERATIONS RESEARCH I: LINEAR PROGRAMMING
- CSC 389 THEORY OF COMPUTATION

Computational Methods
The computational methods area investigates quantitative and computational methods in computer science.

- CSC 331 SCIENTIFIC COMPUTING
- MAT 385 NUMERICAL ANALYSIS I
- MAT 386 NUMERICAL ANALYSIS II
- MAT 330 METHODS OF COMPUTATION AND THEORETICAL PHYSICS I
- MAT 331 METHODS OF COMPUTATION AND THEORETICAL PHYSICS II
- MAT 384 MATHEMATICAL MODELING

Artificial Intelligence
For students with an interest in the computational relations between syntax and semantics.

- CSC 380 FOUNDATIONS OF ARTIFICIAL INTELLIGENCE
- CSC 357 EXPERT SYSTEMS
- CSC 358 SYMBOLIC PROGRAMMING
Data Analysis
For students who are interested in statistical and computational analysis of data. Many of the courses in this area require the student to take MAT 351-353.

- CSC 328 DATA ANALYSIS FOR EXPERIMENTERS
- CSC 334 ADVANCED DATA ANALYSIS
- or MAT 354 MULTIVARIATE STATISTICS
- CSC 367 INTRODUCTION TO DATA MINING
- MAT 261 MULTIVARIABLE CALCULUS II
- MAT 351 PROBABILITY AND STATISTICS I
- MAT 352 PROBABILITY AND STATISTICS II
- MAT 353 PROBABILITY AND STATISTICS III
- MAT 355 STOCHASTIC PROCESSES
- MAT 357 NONPARAMETRIC STATISTICS
- MAT 370 ADVANCED LINEAR ALGEBRA
- MAT 356 APPLIED REGRESSION ANALYSIS
- MAT 358 APPLIED TIME SERIES AND FORECASTING
- MAT 359 SIMULATION MODELS AND MONTE CARLO METHOD

Graphics
The graphics courses are intended for students who want to study the technical and mathematical foundations of computer graphics and animation.

- MAT 337 COMPLEX ANALYSIS
- MAT 261 MULTIVARIABLE CALCULUS II
- MAT 385 NUMERICAL ANALYSIS I
- GPH 211 PERCEPTUAL PRINCIPLES FOR DIGITAL ENVIRONMENTS I
- GPH 212 PERCEPTUAL PRINCIPLES FOR DIGITAL ENVIRONMENTS II
- GPH 325 SURVEY OF COMPUTER GRAPHICS
- GPH 329 COMPUTER GRAPHICS DEVELOPMENT II
- GPH 336 SMOOTH SURFACE MODELING FOR GRAPHICS AND ANIMATION
- GPH 372 PRINCIPLES OF COMPUTER ANIMATION

Computer Vision
Computer vision studies the mathematical and algorithmic underpinnings of image analysis and image processing.

- MAT 261 MULTIVARIABLE CALCULUS II
- MAT 335 REAL ANALYSIS I
- MAT 385 NUMERICAL ANALYSIS I
- MAT 370 ADVANCED LINEAR ALGEBRA
- MAT 384 MATHEMATICAL MODELING
- CSC 381 INTRODUCTION TO DIGITAL IMAGE PROCESSING
- CSC 382 APPLIED IMAGE ANALYSIS

- Open Electives
Open elective credit also is required to meet the minimum graduation requirement of 192 hours.

- Degree Requirements
Students in this degree must meet the following requirements:
 - Complete a minimum of 192 credit hours (generally 48 courses)
 - Earn a grade of C- or higher in WRD 103, WRD 104, and all Major and Minor courses
 - Earn a grade of D or higher in all other Liberal Studies and Open Elective courses
 - Maintain a cumulative GPA of 2.0 or higher
B.A./B.S. Secondary Mathematics Education

Overview

The College of Education offers both a BA and a BS in Secondary Education, many of whose courses are taken in the Department of Mathematical Sciences in the College of Science and Health. While the full listing of program requirements are found on the SOE website (www.education.depaul.edu), we include them here for convenience.

The Bachelor of Arts and Bachelor of Arts programs in Secondary Education Mathematics prepare students to teach 6th through 12th grade in a variety of urban and suburban education settings, including public and private middle schools and high schools.

Students learn educational theories and effective teaching practices, participate in field experiences, which require observation and participation in teaching activities at multiple schools, and student teaching. Students should meet early and regularly with their advisor to design and monitor their program of study.

These programs combines theoretical principles of education and field work with the student’s choice of major. Students follow a general pattern of study for middle school and high school levels. In all cases, appropriate field experience plays an integral role.

Students entering either program must be able and willing to devote themselves to a program requiring a minimum of 100 hours of daytime field experiences in schools. These school-based clinical hours are completed in conjunction with methodology courses that require students to spend a half-day each week in a school. In addition, the student must spend a minimum of 11 weeks in full-time student teaching.

Please make sure you consult the Liberal Studies Requirements, Major Requirements, and College Core Requirements for full degree requirements.

Licensure

Illinois Professional Educator License with endorsement in Secondary Education Mathematics (grades 6-12), an Illinois State Board of Education (ISBE) approved program.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>BA Secondary Ed</th>
<th>BS Secondary Ed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Studies Requirements</td>
<td>74 hours</td>
<td>74 hours</td>
</tr>
<tr>
<td>Major Requirements</td>
<td>114 hours</td>
<td>118 hours</td>
</tr>
<tr>
<td>Open Electives</td>
<td>4 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>Total hours required</td>
<td>192 hours</td>
<td>196 hours</td>
</tr>
</tbody>
</table>
B.A./B.S. Secondary Mathematics Education
Major Requirements

COURSE REQUIREMENTS

Content Area Courses

• **Math Core:** 28 quarter hours required, grade of C or better required

 Math courses must be taken in sequence (i.e. 150 is followed by 151, 160 is followed by 161, etc.). Consult your advisor for a full list of sequences and prerequisites.

 MAT 150 CALCULUS I or MAT 160 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS I
 MAT 151 CALCULUS II or MAT 161 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS II
 MAT 152 CALCULUS III or MAT 162 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS III

 One of the following options

 • MAT 215 INTRODUCTION TO MATHEMATICAL REASONING
 • Discrete Mathematics Sequence
 * MAT 140 DISCRETE MATHEMATICS I
 * MAT 141 DISCRETE MATHEMATICS II
 MAT 260 MULTIVARIABLE CALCULUS I
 MAT 261 MULTIVARIABLE CALCULUS II
 MAT 262 LINEAR ALGEBRA

• **Computer Science Language:** 4 quarter hours required, grade of C or better required

 IT 130 INTRODUCTORY COMPUTING FOR THE WEB or any CSC 200 level course

• **Algebra and Geometry Core:** 16 quarter hours required, grade of C or better required

 MAT 310 ABSTRACT ALGEBRA I
 MAT 311 ABSTRACT ALGEBRA II or MAT 303 THEORY OF NUMBERS
 MAT 320 GEOMETRY I
 MAT 321 GEOMETRY II or MAT 335 REAL ANALYSIS I

• **Probability and Statistics Core:** 4 quarter hours required, grade of C or better required

 MAT 348 APPLIED STATISTICAL METHODS or MAT 351 PROBABILITY AND STATISTICS I

• **History of Math Core:** 4 quarter hours required, grade of C or better required

 MAT 301 HISTORY OF MATHEMATICS
B.A./B.S. Secondary Education Mathematics Continued...

Pre-Education Introductory Courses: 20 quarter hours required, grade of C or better required

- SCU 207 SOCIAL AND HISTORICAL ISSUES IN EDUCATION
- SEC 364 METHODS: CURRICULUM AND INSTRUCTION IN SECONDARY SCHOOLS (4 credit hours)
- SEC 313 THE NATURE OF MATHEMATICS
- SEC 323 INQUIRY & APPLICATION IN DEVELOPING SECONDARY MATHEMATICS PEDAGOGY
- SCU 336 ADOLESCENT AND ADULT GROWTH AND DEVELOPMENT
 or SCU 337 HUMAN GROWTH AND DEVELOPMENT

Advanced Standing Education Courses: 28 quarter hours required, grade of C or better required

- LSI 346 STRATEGIES FOR MAINSTREAMING AND INCLUSION
- SEC 325 LITERACY IN THE CONTENT AREAS
- SEC 373 TEACHING MATHEMATICS IN THE HIGH SCHOOL 1
- SEC 383 TEACHING MATHEMATICS IN THE HIGH SCHOOL 2
- SCU 351 DOING CRITICAL PRACTITIONER RESEARCH IN EDUCATION (Spans over two quarters, has a mandatory field experience component and taken in conjunction with SEC 373 and SEC 383)
- SEC 395 ASSESSMENT ISSUES IN SECONDARY EDUCATION
- BBE 501 TEACHING ADOLESCENT ENGLISH LANGUAGE LEARNERS AND DIALECT SPEAKERS ACROSS THE CURRICULUM

Bachelor of Science Requirements

To qualify for the Bachelor of Science degree, complete 4 quarter hours in natural or computer science beyond the requirements for the Bachelor of Arts degree. Please consult your advisor for approval of appropriate natural and computer science courses.

Open Electives: 4 quarter hours are required

Open elective credit also is required to meet the minimum graduation requirement of 192 hours. The following cannot be used to fulfill an open elective: WRD 98, MAT 94, and MAT 95.

Student Teaching: 10 quarter hours required, grade of B- or better required

Registration in student teaching requires completion of all requirements and procedures indicated in the college core section. EDU 095 indicates to the Illinois State Board of Education that all field experience hours are complete. All students also take SEC 387, Capstone Seminar with student teaching (listed in the Liberal Studies section).

- SEC 390 SECONDARY STUDENT TEACHING (10 credit hours)
- EDU 095 CLINICAL EXPERIENCE WITH CHILDREN AND YOUTH (non-credit, non-tuition, PA grade required)
Licensure Tests (for the B.A. Degree)

All individuals licensed by the Illinois State Board of Education (ISBE) are required to complete licensure tests specific to their teaching license. Secondary Education Mathematics majors must complete the following tests:

- Test of Academic Proficiency (TAP) (test #400) — assesses knowledge of reading comprehension, language arts, writing, and math. Test is required to qualify for Advanced Standing. *Check with your advisor about qualifying for a waiver with acceptable ACT or SAT test scores.
- Mathematics Content Area Test (test #115) — assesses knowledge of both the processes and applications of mathematics. Test is required before Student Teaching (deadlines apply).
- Assessment of Professional Teaching (APT) (test #103, grade 6-12) — assesses knowledge of teaching planning, delivery, assessment, professionalism, and technology. Test is required to be licensed; recommended to be taken before Student Teaching.

Certification Tests (for the B.S. Degree)

All individuals certified by the Illinois State Board of Education (ISBE) are required to complete certification tests specific to their teaching certificate. Secondary Education Mathematics majors must complete the following tests:

- Basic Skills (test #096) or TAP (test #300, or #400) — assesses knowledge of reading comprehension, language arts, and math. Test is required to qualify for Advanced Standing.
- Mathematics Content Area Test (test #115) — assesses knowledge of both the processes and applications of mathematics. Test is required before Student Teaching (deadlines apply).
- Assessment of Professional Teaching (APT) (test #103, grade 6-12) — assesses knowledge of teaching planning, delivery, assessment, professionalism, and technology. Test is required to be certified; recommended that it be taken before Student Teaching.
Combined Bachelor's/Master's Degrees

Overview

The combined Bachelor's/Master's degree programs allow students to complete 12 graduate credit hours while still undergraduates. These three graduate level courses will count toward both the undergraduate and graduate degree programs. The Mathematical Sciences (BA/BS) offers four options:

- Mathematical Sciences (BS/BA)/ Applied Mathematics (MS)
- Mathematical Sciences (BS/BA)/ Applied Statistics (MS)
- Mathematical Sciences (BS/BA)/ Pure Mathematics (MS)
- Mathematical Sciences (BS/BA)/Secondary Education Mathematical Sciences (MEd)

Mathematical Sciences (BS/BA)/ Applied Mathematics (MS)

Students apply to this program in spring of their junior year; interested students should meet with the Director of the Graduate Program. Students accepted into this program take a maximum of twelve graduate credit hours as three courses in their senior year; these graduate courses apply toward both undergraduate and graduate Mathematical Sciences requirements. Students must apply for undergraduate degree conferral in anticipation of completing their fourth year of study.

Mathematical Sciences (BS/BA)/ Applied Statistics (MS)

Students apply to this program in spring of their junior year; interested students should meet with the Director of the Graduate Program. Students in this program take a maximum of twelve graduate credit hours as three courses in their senior year; these graduate courses apply toward both undergraduate and graduate Mathematical Sciences requirements.

Mathematical Sciences (BS/BA)/ Pure Mathematics (MS)

Students apply to this program in spring of their junior year; interested students should meet with the Director of the Graduate Program. Students in this program take a maximum of twelve graduate credit hours as three courses in their senior year; these graduate courses apply toward both undergraduate and graduate Mathematical Sciences requirements.

Mathematical Sciences (BS/BA)/Secondary Education Mathematical Sciences (MEd)

This combined degree program of the College of Science & Health and the College of Education was collaboratively developed, and is governed and taught by faculty from these units.

Students may apply to the Program during the spring of their junior year. They must enroll in the Junior Year Experiential Learning course, TCH 320, and meet other application criteria; these include completion of at least 16 quarter credit hours at DePaul and a 3.0 GPA. During their senior year, students are required to complete a Program capstone course, TCH 390, and three 400-level courses that count toward both their undergraduate and graduate degrees:
Math Content Area (grades of C or better required for licensure):
The following Math content area requirements are required. These can be taken as part of the major, liberal studies or open elective requirements:

- **One of the following three-course Calculus sequences:**
 - MAT 150, MAT 151, MAT 152
 - MAT 147, MAT 148, MAT 149
 - MAT 160, MAT 161, MAT 162
 - MAT 170, MAT 171 and (MAT 149, MAT 152, or MAT 162)
- MAT 215 INTRODUCTION TO MATHEMATICAL REASONING
 or MAT 140 DISCRETE MATHEMATICS I and MAT 141 DISCRETE MATHEMATICS II
- MAT 260 MULTIVARIABLE CALCULUS I
- MAT 261 MULTIVARIABLE CALCULUS II
- MAT 262 LINEAR ALGEBRA

- **Choose one of the following:**
 - CSC 212 PROGRAMMING IN JAVA II
 - CSC 262 PROGRAMMING IN C++ II
 - CSC 242 INTRODUCTION TO COMPUTER SCIENCE II
- MAT 310 ABSTRACT ALGEBRA I
- MAT 303 THEORY OF NUMBERS
 or MAT 311 ABSTRACT ALGEBRA II
- MAT 320 GEOMETRY I
- MAT 321 GEOMETRY II
 or MAT 335 REAL ANALYSIS I
- MAT 351 PROBABILITY AND STATISTICS I
 or MAT 348 APPLIED STATISTICAL METHODS
- MAT 301 HISTORY OF MATHEMATICS

The Master’s year comprises teacher-preparation coursework that culminates with student teaching during Spring quarter. Upon graduation and the fulfilling of State of Illinois licensure requirements (which may require some additional coursework in the student’s major and related fields), students are eligible to be certified licensed to teach Mathematics at the 6th-12th grade levels.

A full description of the Program can be found on the College of Education website in the graduate course catalog. Students interested in the Program should consult with the designated TEACH Program advisor in their home department.
Minor in Mathematics
Course Requirements

A minor in Mathematics can be developed to complement a major program in any major, with a focus on pure and applied mathematical theory.

- Choose one of the following three course Calculus sequences:
 - Sequence One
 * MAT 150 CALCULUS I
 * MAT 151 CALCULUS II
 * MAT 152 CALCULUS III
 - Sequence Two
 * MAT 147 CALCULUS WITH INTEGRATED PRECALCULUS I
 * MAT 148 CALCULUS WITH INTEGRATED PRECALCULUS II
 * MAT 149 CALCULUS WITH INTEGRATED PRECALCULUS III
 - Sequence Three
 * MAT 160 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS I
 * MAT 161 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS II
 * MAT 162 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS III
 - Sequence Four
 * MAT 170 CALCULUS I WITH SCIENTIFIC APPLICATIONS
 * MAT 171 CALCULUS II WITH SCIENTIFIC APPLICATIONS
 * MAT 172 CALCULUS III WITH SCIENTIFIC APPLICATIONS

- One of the following options
 - MAT 215 INTRODUCTION TO MATHEMATICAL REASONING
 - Discrete Mathematics Sequence
 * MAT 140 DISCRETE MATHEMATICS I
 * MAT 141 DISCRETE MATHEMATICS II

- Two additional mathematics courses chosen from the 200 or 300-level courses which are admissible for credit as part of the common core or as part of one of the concentrations in mathematics.

Business students who have an exceptionally strong background in calculus, including calculus of trig functions, may be permitted by the chair to substitute MAT 135 BUSINESS CALCULUS I and MAT 136 BUSINESS CALCULUS II for MAT 150 CALCULUS I.

Students cannot earn a minor in the same academic program as their major.
Minor in Statistics
Course Requirements

The Statistics minor is designed for students who wish to apply advanced statistical skills to a career in engineering, physics, business, or biological science. Students will learn statistical computation, theory, and analysis.

A total of six courses are required based upon the below outline.

- Choose one of the following three course Calculus sequences:
 - **Sequence One**
 * MAT 150 CALCULUS I
 * MAT 151 CALCULUS II
 * MAT 152 CALCULUS III
 - **Sequence Two**
 * MAT 147 CALCULUS WITH INTEGRATED PRECALCULUS I
 * MAT 148 CALCULUS WITH INTEGRATED PRECALCULUS II
 * MAT 149 CALCULUS WITH INTEGRATED PRECALCULUS III
 - **Sequence Three**
 * MAT 160 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS I
 * MAT 161 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS II
 * MAT 162 CALCULUS FOR MATHEMATICS AND SCIENCE MAJORS III
 - **Sequence Four**
 * MAT 170 CALCULUS I WITH SCIENTIFIC APPLICATIONS
 * MAT 171 CALCULUS II WITH SCIENTIFIC APPLICATIONS
 * MAT 149, MAT 152 OR MAT 162

- MAT 348 APPLIED STATISTICAL METHODS
- MAT 349 APPLIED STATISTICAL METHODS II
- One course from the following list
 MAT 326 SAMPLE SURVEY METHODS
 MAT 328 DESIGN OF EXPERIMENTS
 MAT 356 APPLIED REGRESSION ANALYSIS
 MAT 357 NONPARAMETRIC STATISTICS

Business students who have an exceptionally strong background in calculus, including calculus of trig functions, may be permitted by the chair to substitute MAT 135 BUSINESS CALCULUS I and MAT 136 BUSINESS CALCULUS II for MAT 150 CALCULUS I.

Students cannot earn a minor in the same academic program as their major.
Course Descriptions

MAT 100 INTRODUCTION TO QUANTITATIVE REASONING
An introduction to the algebra needed for quantitative reasoning with a focus on functions and modeling. This course emphasizes the applications of elementary algebra and the use of functions to model and analyze real-world situations. Topics include functions from graphical, tabular, and symbolic points of view and models using linear, quadratic, power, exponential, and logarithmic functions. Graphing technology is used extensively. This course is prerequisite to LSP 120 and is intended for students continuing on to LSP 120. This course is not recommended for students whose plan of study includes calculus. Prerequisite: MAT 094 or placement.

MAT 101 INTERMEDIATE ALGEBRA
Functions, factoring, rational expressions, roots, radicals, quadratic equations, quadratic inequalities. Course meets for an additional 1 hour lab session each week for enrichment and problem solving. Prerequisite: MAT 095.

MAT 110 FOUNDATIONS OF MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS I
This course gives students a deeper understanding of the foundations of elementary mathematics. Topics include problem solving, number systems, the decimal system, the number line, rounding, fractions, percentages, addition and subtraction. MAT 101 or LSP 120 or equivalents or placement by test is a prerequisite for this class.

MAT 111 FOUNDATIONS OF MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS II
This course gives students a deeper understanding of the foundations of elementary mathematics. Topics include problem solving, fractions, percentages, addition, subtraction, multiplication, and division. Prerequisite: MAT 110.

MAT 112 GAMBLING AND GAMES, PROBABILITY AND STATISTICS
Students with very little mathematical background and little or no computing background will be given a brief introduction to the use of Microsoft Excel for mathematical purposes. This will be followed by a brief discussion of chance, gambling, and probability. Several popular games (such as lotteries, roulette, craps, and poker) will be considered both from a theoretical point of view and by means of very simple computer simulation. At the end, we will discuss briefly topics from game theory such as zero-sum games and game with cooperation. Prerequisite: MAT 094 or placement.

MAT 115 MATHEMATICS FOR ELEMENTARY SCHOOL TEACHERS III
Continuation of Math 110-111. Prerequisite: MAT 111.

MAT 130 PRECALCULUS
Functions and their graphs, exponential and logarithmic functions, inverse functions, polynomial and rational functions. Prerequisite: MAT 101 or placement by test.

MAT 131 TRIGONOMETRY
Trigonometric functions, inverse trigonometric functions, trigonometric identities, laws of sines and cosines, polar coordinates and complex plane. MAT 130 or equivalents or placement by test is a prerequisite for this class.

MAT 135 BUSINESS CALCULUS I
Differential calculus of one or more variables with business applications. Prerequisite: MAT 130 or equivalent.

MAT 136 BUSINESS CALCULUS II
Integral calculus, matrix algebra, and probability theory with business applications. MAT 135 or equivalent is a prerequisite for this class.

MAT 137 BUSINESS STATISTICS
Basic concepts of statistics and applications; data analysis with the use of Excel; theoretical distributions; sampling distributions; problems of estimation; hypothesis testing; problems of sampling; linear regression and correlation. MAT 136 or equivalent is a prerequisite for this class.

MAT 140 DISCRETE MATHEMATICS I
Combinatorics, graph theory, propositional logic, singly-quantified statements, operational knowledge of set theory, functions, number systems, methods of direct and indirect proof. MAT 130 or above or equivalents or placement by test is a prerequisite for this class.

MAT 141 DISCRETE MATHEMATICS II
Methods of direct and indirect proof, set theoretic proofs, sequences, mathematical induction, recursion, multiply-quantified statements, relations and functions, complexity. MAT 140 is a prerequisite for this class.

MAT 147 CALCULUS W/ INTEGRATED PRECALCULUS I
Limits, continuity, the derivative, rules of differentiation, and applications, with precalculus review included for each topic. The full MAT 147-8-9 sequence covers all the material of MAT 150-1-2 plus additional precalculus material. Prerequisite: MAT 130 or equivalents, or placement by test.

MAT 148 CALCULUS W/ INTEGRATED PRECALCULUS II
Extrema, curve sketching, related rates, definite and indefinite integrals, applications of the integral, exponential and logarithmic functions, with precalculus review included for each topic. MAT 147 is a prerequisite for this class.

MAT 149 CALCULUS W/ INTEGRATED PRECALCULUS III
Techniques of integration, L'Hopital's rule, improper integrals, Taylor polynomials, series and sequences, first-order differential equations, with precalculus review included for each topic. MAT 148 is a prerequisite for this class.

*Red = Core Course
*Purple = Statistics Course
MAT 150 CALCULUS I
Limits, continuity, the derivative, rules of differentiation, applications of the derivative, extrema, curve sketching, and optimization. This course meets for an additional 1-hour lab session each week for enrichment and problem solving. Prerequisite: MAT 131 or placement by test.

MAT 151 CALCULUS II
Definite and indefinite integrals, the Fundamental Theorem of Calculus, applications of the integral, exponential and logarithmic functions, inverse trigonometric functions, techniques of integration. This course meets for an additional 1-hour lab session each week for enrichment and problem solving. Prerequisite: MAT 150 or MAT 155 or MAT 160 or MAT 170.

MAT 152 CALCULUS III
L'Hôpital's rule, improper integrals, sequences and series, Taylor polynomials. This course meets for an additional 1-hour lab session each week for enrichment and problem solving. Prerequisite: MAT 151 or MAT 161 or MAT 171.

MAT 155 SUMMER CALCULUS I
Limits, continuity, the derivative, rules of differentiation, applications of the derivative, extrema, curve sketching, and optimization. Definite and indefinite integrals, the Fundamental Theorem of Calculus, applications of the integral. 6 Credit hours. Summer session only. PREREQUISITE(S): MAT 131 or placement by Mathematics Diagnostic Test.

MAT 156 SUMMER CALCULUS II
Further applications of the integral, exponential and logarithmic functions, inverse trigonometric functions, techniques of integration. L'Hôpital's rule, improper integrals, sequences and series, Taylor polynomials. 6 Credit hours. Summer session only. PREREQUISITE(S): MAT 148 or MAT 151 or MAT 155 or MAT 161.

MAT 160 CALCULUS FOR MATH AND SCIENCE MAJORS I
Limits, continuity, the derivative, rules of differentiation, applications of the derivative, extrema, curve sketching, and optimization. This course meets for an additional 1.5-hour lab session each week for enrichment and problem solving. MAT 131 or placement by test is a prerequisite for this class.

MAT 161 CALCULUS FOR MATH AND SCIENCE MAJORS II
Definite and indefinite integrals, the Fundamental Theorem of Calculus, applications of the integral, exponential and logarithmic functions, inverse trigonometric functions, techniques of integration. This course meets for an additional 1-hour lab session each week for enrichment and problem solving. Prerequisite: MAT 150 or MAT 155 or MAT 160 or MAT 170.

MAT 162 CALCULUS FOR MATH AND SCIENCE MAJORS III
L'Hôpital's rule, improper integrals, sequences and series, Taylor polynomials. This course meets for an additional 1.5-hour lab session each week for enrichment and problem solving. Prerequisite: MAT 151 or MAT 161 or MAT 171.

MAT 170 CALCULUS I WITH SCIENTIFIC APPLICATIONS
The course covers the following topics using examples from the sciences: Functions as models, logarithmic scale graphing, exponential growth and decay, difference equations and limits of sequences, geometric series, functions and limits, trigonometric functions and their limits, continuity, limits at infinity, the derivative, differentiation rules, derivatives of trigonometric and exponential functions, related rates, derivatives of inverse and logarithm functions. Course meets for an additional lab session each week during which time students will work on applied mathematics projects based on the topics covered in the course. Students majoring in the sciences should consult with their major department to decide between the 160 and 170 sequences. MAT 131 or placement by test is a prerequisite for this class.

MAT 171 CALCULUS II WITH SCIENTIFIC APPLICATIONS
The course covers the following topics using examples from the sciences: Applications of the derivative including approximation and local linearity, differentials, extrema and the Mean Value Theorem, monotonicity and concavity, extrema, inflection points, graphing, L'Hôpital's Rule, optimization, and the Newton-Raphson method, antiderivatives, the definite integral, Riemann sums, the Fundamental Theorem of Calculus, area, cumulative change, average value of a function, and techniques of integration: substitution rule and integration by parts. Course meets for an additional lab session each week during which time students will work on applied mathematics projects based on the topics covered in the course. Course meets for an additional lab session each week during which time students will work on applied mathematics projects based on the topics covered in the course. Prerequisite: MAT 150 or MAT 155 or MAT 160 or MAT 170.

MAT 172 CALCULUS III WITH DIFFERENTIAL EQUATIONS
This course is designed for students in the life sciences and covers some topics from MAT 152, differential equations and an introduction to the Calculus of functions of several variables. Specific topics are as follows. Numerical integration, partial fraction expansions, Taylor approximations of a function, differential equations, separation of variables, slope fields, Euler's existence theorem, polygonal approximations to solutions of differential equations, the logistic equation and allometric growth models, equilibria of differential equations and their stability, applications of stability theory, functions of several variables, partial derivatives, directional derivative and the gradient. Course meets for an additional lab session each week during which time students will work on applied mathematics projects based on the topics covered in the course. Prerequisite: MAT 151 or MAT 161 or MAT 171.

MAT 207 HISTORY OF PROBABILITY AND STATISTICS
History Of Probability And Statistics.
MAT 200 LINEAR ALGEBRA WITH APPLICATIONS
(Primarily for non-mathematics majors.) Systems of linear equations, matrices and matrix algebra, determinants, applications to linear programming, graph theory. Prerequisite: MAT 141 or MAT 148 or MAT 151 or MAT 155 or MAT 161 or MAT 172.

MAT 215 INTRODUCTION TO MATHEMATICAL REASONING
An introduction to basic concepts and techniques used in higher mathematics courses: set theory, equivalence relations, functions, cardinality, techniques of proof in mathematics. The emphasis is on problem solving and proof construction by students. The department recommends that students take this course no later than the spring quarter of the sophomore year. Prerequisite: MAT 149 or MAT 152 or MAT 156 or MAT 162 or MAT 172.

MAT 220 LINEAR ALGEBRA
Systems of linear equations, matrices and matrix algebra, determinants, applications to linear programming, graph theory. Prerequisite: MAT 141 or MAT 148 or MAT 151 or MAT 155 or MAT 161 or MAT 171.

MAT 242 ELEMENTS OF STATISTICS
Descriptive statistics, elements of probability, the binomial and normal probability models; large and small sample hypothesis testing, correlation and regression analysis. Use of computer packages. This course does not count toward mathematics major credit. Cross-listed with SOC 279. (MAT 095 and MAT 100) or MAT 101 or placement are prerequisites for this class.

MAT 260 MULTIVARIABLE CALCULUS I
Vectors, dot and cross products, lines and planes, cylinders and quadric surfaces, vector-valued functions, parametrization of plane curves and three dimensional curves, arc length, curvature and normal vector, functions of several independent variables, partial derivatives, the chain rule, directional derivatives, differentials, extreme values. Prerequisite: MAT 149 or MAT 152 or MAT 156 or MAT 161 or MAT 172.

MAT 261 MULTIVARIABLE CALCULUS II
Lagrange multipliers, double and iterated integrals, area by double integrals, triple integrals, triple integrals in cylindrical and spherical coordinates, line integrals, vector fields, conservative vector fields and potential functions, Green’s Theorem, surface integrals, Stokes’ Theorem, Gauss’ Theorem. Prerequisite: MAT 260.

MAT 262 LINEAR ALGEBRA
Systems of linear equations and matrices; vectors in n-space; vector spaces: linear combinations, linear independence, basis; linear transformations, change of basis, eigenvalues and eigenvectors. Prerequisite MAT 260.

MAT 301 HISTORY OF MATHEMATICS
History of mathematics with problem solving. Prerequisite: C-minus or better in MAT 141 or MAT 215.

MAT 302 COMBINATORICS
Methods of counting and enumeration of mathematical structures. Topics include generating functions, recurrence relations, inclusion relations, and graphical methods. Prerequisite: C-minus or better in MAT 141 or MAT 215.

MAT 303 THEORY OF NUMBERS
A study of properties of integers: divisibility; Euclid’s Algorithm; congruences and modular arithmetic; Euler’s Theorem; Diophantine equations; distribution of primes; RSA cryptography. Prerequisite: C-minus or better in MAT 141 or MAT 215.

MAT 304 DIFFERENTIAL EQUATIONS
Linear equations, systems with constant coefficients, series solutions, Laplace transforms, and applications. Formerly MAT 338. Prerequisite: MAT 149 or MAT 152 or MAT 156 or MAT 162. Co-requisite: MAT 261.

MAT 309 TEACHING AND LEARNING SECONDARY SCHOOL MATHEMATICS

MAT 310 ABSTRACT ALGEBRA I
The first quarter of a 3-quarter sequence. Topics in the sequence include the integers; abstract groups, rings, and fields; polynomial rings; isomorphism theorems; extension fields; and an introduction to Galois theory. MAT 303 is highly recommended. Prerequisites: MAT 262 and (C-minus or better in MAT 141 or MAT 215).

MAT 311 ABSTRACT ALGEBRA II
A continuation of topics from MAT 310: Groups, rings, fields, polynomial rings, isomorphism theorems, extension fields, and an introduction to Galois theory. Prerequisite: C-minus or better in MAT 310, or instructor permission.

MAT 312 ABSTRACT ALGEBRA III
A continuation of topics from MAT 311: Groups, rings, fields, polynomial rings, isomorphism theorems, extension fields, and an introduction to Galois theory. Prerequisite: C-minus or better in MAT 311, or instructor permission.

MAT 320 GEOMETRY I
Incidence and separation properties of planes; congruences; the parallel postulate; area theory; ruler and compass construction. Prerequisite: C-minus or better in MAT 141 or MAT 215.

MAT 321 GEOMETRY II
Introduction to solid geometry and non-euclidean geometry (hyperbolic and spherical models); other special topics. Prerequisite: C-minus or better in MAT 320, or instructor permission.

MAT 323 DATA ANALYSIS & STATISTICAL SOFTWARE I
Computing with a statistical package. Introduction to data analysis, elementary statistical inference, regression and correlation. This course does not count toward mathematics major credit. (CROSS-LISTED AS CSC 323). Prerequisite: MAT 130 or placement by test.
MAT 324 DATA ANALYSIS & STATISTICAL SOFTWARE II
Advanced features and applications of the statistical package used in 323. (CROSS-LISTED WITH CSC 324). Prerequisite: C-minus or better in MAT 323, or instructor permission.

MAT 326 SAMPLE SURVEY METHODS
Simple random, stratified, systematic and cluster sampling. Multistage and area sampling. Random-response and capture-release models. Prerequisite: MAT 349 or MAT 353.

MAT 328 DESIGN OF EXPERIMENTS
Linear models and quadratic forms. Single, two and several-factor experiments, incomplete designs, confounding and fractional factorial experiments. Response surfaces and partially balanced incomplete block designs. Prerequisite: MAT 349 or MAT 353.

MAT 330 METHODS OF COMPUTATION AND THEORETICAL PHYSICS I
Computational and theoretical methods in ordinary differential equations, complex numbers, systems of equations, phase plane analysis, and bifurcations. Applications to damped, driven oscillators, and to electronics.

MAT 331 METHODS OF COMPUTATION AND THEORETICAL PHYSICS II
Computational and theoretical methods in ordinary differential equations, complex numbers, systems of equations, phase plane analysis, bifurcations. Applications to damped, driven oscillators, electronics. Lab Fee. COREQUISITE(S): MAT 261. Prerequisite: MAT 261.

MAT 335 REAL ANALYSIS I
Real number system, completeness, supremum, and infimum, sequences and their limits, lim inf, lim sup, limits of functions, continuity. Prerequisites: (MAT 149 or MAT 152 or MAT 156 or MAT 162) and (C-minus/better in MAT 141 or MAT 215).

MAT 336 REAL ANALYSIS II
Properties of continuous functions, uniform continuity, sequences of functions, differentiation, integration. To follow 335 in the Winter Quarter. Prerequisite: C-minus or better in MAT 335, or instructor permission.

MAT 337 COMPLEX ANALYSIS
Complex functions; complex differentiation and integration; series and sequences of complex functions. Prerequisite: MAT 261.

MAT 340 TOPOLOGY
An introduction to point-set topology: metric spaces, topological spaces, continuity, connectedness, and compactness. Prerequisites: (C-minus or better in MAT 141 or MAT 215) and (C-minus or better in MAT 220 or MAT 262), or instructor permission.

MAT 341 STATISTICAL METHODS USING SAS
The SAS programming language. Data exploration, description and presentation. Inference based on continuous and categorical data. Analysis of variance models and regression procedures including logistic regression. Cross-listed with MAT 448. Prerequisite: Successful completion of the program.

MAT 342 ELEMENTS OF STATISTICS II
Multiple regression, correlation, analysis of variance, time series, and sampling. Course content and emphases will vary with students’ needs and backgrounds. Prerequisite: MAT 137 or MAT 157 or MAT 323 or MAT 348.

MAT 343 BUSINESS STATISTICS II
Multiple regression, correlation, analysis of variance, time series and sampling. Statistical theory applied to business. Use of statistical computing packages. Course content will vary with the needs and desires of individual students. (FORMERLY BMS 342). Prerequisite: C-minus or better in MAT 137, or instructor permission.

MAT 348 APPLIED STATISTICAL METHODS
Introduction to statistical software (which will be used throughout the course). Descriptive statistics; elementary probability theory; discrete and continuous probability models; principles of statistical inference; Simple linear regression and correlation analysis. Prerequisite: MAT 148 or MAT 151 or MAT 155 or MAT 161 or MAT 171.

MAT 349 APPLIED STATISTICAL METHODS II
A continuation of Mathematics 348. Multiple regression; analysis of frequency data, ANOVA and some experimental designs; nonparametric inference and time series analysis. Use of statistical software. Prerequisite: C-minus or better in MAT 348, or instructor permission.

MAT 351 PROBABILITY AND STATISTICS I
Probability spaces, combinatorial probability methods, discrete and continuous random variables and distributions, moment generating functions, development and applications of the classical discrete and continuous distributions. Prerequisite: MAT 261.

MAT 352 PROBABILITY AND STATISTICS II
Joint probability distributions and correlation; law of large numbers and the central limit theorem; sampling distributions and theory of estimation. Prerequisite: C-minus or better in MAT 351, or instructor permission.

MAT 353 PROBABILITY AND STATISTICS III
Principles of hypothesis testing; most powerful tests and likelihood ratio tests; linear regression; one-way analysis of variance; categorical data analysis, nonparametric statistics. Prerequisite: C-minus or better in MAT 352, or instructor permission.

MAT 354 MULTIVARIATE STATISTICS
The multivariate normal distribution. Hypothesis tests on means and variances including the multivariate linear model. Classification using the linear discriminant function. Principal components and factor analysis. PREREQUISITE(S): MAT 353 and 262, or consent of instructor. (CROSS-LISTED WITH MAT 454). Prerequisites: MAT 262 and MAT 353.
MAT 355 STOCHASTIC PROCESSES

MAT 356 APPLIED REGRESSION ANALYSIS
Simple linear, multiple, polynomial and general regression models. Selection of best regression equation and examination of residuals for homoscedasticity and other diagnostics. Use of statistical software. Cross-listed with MAT 456. Prerequisites: MAT 353 and (MAT 220 or MAT 262).

MAT 357 NONPARAMETRIC STATISTICS
Inference concerning location and scale parameters, goodness of fit tests, association analysis and tests of randomness using distribution free procedures. Bootstrap techniques. Smoothing methodologies. Cross-listed with MAT 457. Prerequisite: MAT 349 or 353.

MAT 358 APPLIED TIME SERIES AND FORECASTING
Development of the Box-Jenkins methodology for the identification, estimation, and fitting of ARIMA, and transfer-function stochastic models for the purpose of analyzing and forecasting stationary, non-stationary, and seasonal time series data. The course emphasizes practical time-series data analysis using computer packages and includes applications to economic, business, and industrial forecasting. Cross-listed with MAT 512. Prerequisites: MAT 341 and MAT 353.

MAT 359 SIMULATION MODELS AND MONTE CARLO METHOD
Techniques of computer simulation of the classical univariate and multivariate probability distribution models, and such random processes as random walk, Markov chains, and queues. Cross-listed with MAT 459. Prerequisites: MAT 341 and MAT 353.

MAT 361 ACTUARIAL SCIENCE I
The Theory of Interest: Theory and applications of compound interest to annuities, amortization schedules, sinking funds, bonds, and yield rates. Cross-listed with MAT 461. Prerequisite: MAT 149 or MAT 152 or MAT 156 or MAT 162.

MAT 362 ACTUARIAL SCIENCE II
Basic Contingencies: The theory and applications of contingency mathematics in life and health insurance, annuities, and pensions from both a probabilistic and a deterministic viewpoint. Topics include survival distribution and life tables, life insurance, and life annuities. Cross-listed with MAT 462. Prerequisite: C-minus or better in MAT 361, or instructor permission. Co-requisite: MAT 352.

MAT 363 ACTUARIAL SCIENCE III
Advanced Contingencies: A continuation of Mathematics 362. Topics include net premiums, net premiums reserves, multiple life functions, multiple decrement models, and valuation theory for pension plans. Cross-listed with MAT 463. Prerequisite: C-minus or better in MAT 362, or instructor permission.

MAT 364 STOCHASTIC RISK MODELS
Distributional quantities, distribution properties and classification, frequency and severity models, aggregate loss and ruin models. Cross-listed with MAT 464. Prerequisite: MAT 353.

MAT 365 STOCHASTIC SURVIVAL MODELS
Construction of parametric and nonparametric models, model validation and selection, credibility theory, simulation techniques. Cross-listed with MAT 465. Prerequisite: MAT 353.

MAT 366 MATHEMATICAL DEMOGRAPHY
Introduction to demography; mortality table construction and methods of population and demographic analysis. Prerequisite: MAT 353.

MAT 367 CREDIBILITY THEORY
Credibility theory and loss distributions with applications to casualty insurance classification and rate making. Cross-Listed As MAT 467. Prerequisite: MAT 362.

MAT 368 MATHEMATICAL FINANCE
Financial derivatives, risk management, investment strategies, arbitrage, valuation, Put-call parity, the binomial model, option pricing, lognormal models for asset prices, Black-Scholes formula, value at risk and conditional tail expectation, Brownian motion and Ito’s lemma, interest rate models. Cross-listed with MAT 468. Prerequisite: MAT 353.

MAT 370 ADVANCED LINEAR ALGEBRA
Vector spaces, basis and dimension; matrix representation of linear transformations and change of basis; diagonalization of linear operators; inner product spaces; diagonalization of symmetric linear operators, principal-axis theorem, and applications. Cross-listed MAT 470. Prerequisites: MAT 262 and (C-minus or better in MAT 141 or MAT 215).

MAT 372 LOGIC AND SET THEORY
Topics in axiomatic set theory, formal logic, and computability theory. Prerequisite: C-minus or better in MAT 141 or MAT 215.

MAT 381 FOURIER ANALYSIS AND SPECIAL FUNCTIONS
The course covers the basic principles of discrete and continuous Fourier analysis and some of its applications currently used in scientific modeling. Students will use the computer to implement the computational algorithms developed in the course. Some of the topics covered will include Fourier transforms and their application to signal and image processing, discrete Fourier series, the fast Fourier transform algorithm and applications to digital filtering, and the Radon transforms and its applications to tomography. Prerequisite: MAT 262.

MAT 384 MATHEMATICAL MODELING
Modeling of real world problems using mathematical methods. Includes a theory of modeling and a study of specific models, selected from deterministic, stochastic, continuous, and discrete models. Cross-listed with MAT 484. Prerequisites: (MAT 220 or MAT 262) and (MAT 348 or MAT 351).
MAT 385 NUMERICAL ANALYSIS I
Use of a digital computer for numerical computation. Error analysis, Gaussian elimination and Gauss-Seidel method, solution of non-linear equations, function evaluation, cubic splines, approximation of integrals and derivatives, Monte Carlo methods. Cross-listed with MAT 485. Prerequisites: (MAT 220 or MAT 262) and (MAT 149 or MAT 152 or MAT 156 or MAT 162).

MAT 386 NUMERICAL ANALYSIS II
Theory and algorithms for efficient computation, including the Fast Fourier transform, numerical solution of non-linear systems of equations. Minimization of functions of several variables. Sparse systems of equations and corresponding eigenvalue problems. (CROSS-LISTED WITH MAT 486 & CSC 386/486). Prerequisite: C-minus or better in MAT 385, or instructor permission.

MAT 387 OPERATIONS RESEARCH I: LINEAR PROGRAMMING
The Linear Programming problem and its dual; the simplex method; transportation and warehouse problems; computer algorithms and applications to various fields. (CROSS-LISTED AS MAT 487). Prerequisites: (MAT 262 or 220) and (any introductory programming course).

MAT 388 OPERATIONS RESEARCH II: OPTIMIZATION THEORY
Integer programming; non-linear programming; dynamic programming; queuing theory; game theory. (CROSS-LISTED AS MAT 488). Prerequisite: C-minus or better in MAT 387, or instructor permission.

MAT 389 OPERATIONS RESEARCH III
Advanced Topics. Prerequisite: C-minus or better in MAT 388, or instructor permission.

MAT 390 MATHEMATICS READING AND RESEARCH
The course provides students with a hands-on experience about research in mathematical sciences. Students attend seminars and research colloquia, and actively participate at discussions about the topics presented. Students reflect on the connections between various areas of modern mathematics, the challenges of structuring and solving problems, and the personal experience of doing mathematics. As a final project, each student prepares and presents a mathematical expository paper describing a current area of research, emphasizing its relevance to mathematics in general and its connections to real world problems. This course may be used to satisfy the junior-year experiential learning (JYEL) requirement.

MAT 391 STUDIES IN DEMOGRAPHY
The course introduces students to the study by statistical methods of human populations in terms of type of data sources, population composition, growth, fertility, mortality, morbidity, health, migration, and urbanization. In addition, the course has a major component that emphasizes the study of current characteristics of the populations of developing countries in comparison with some developed countries including the United States of America. Students are required to present and submit a research project with comparative analysis of demographic statistics obtained on several developing and developed countries.

MAT 395 TOPICS IN MATHEMATICS
Consult course schedule for current offerings. Course may be repeated for credit when title and content change. Variable credit allowed.

MAT 396 SENIOR THESIS RESEARCH
A thesis option is available to mathematics majors who wish to pursue an extended independent project related to a theoretical or applied focus of the program. Students work under the guidance of a faculty mentor. A total of 4 credits must be completed over the one or two quarters prior to the thesis submission. Interested students are strongly encouraged to enroll in MAT 390 during their junior year.

MAT 397 MATHEMATICAL PEDAGOGY: THEORY & PRACTICE
Introduction to current theories and practices in college mathematics instruction; helps undergraduate mathematics majors develop a deeper understanding of fundamental mathematical concepts and an awareness of how people learn mathematical ideas, and prepares them to work as consultants in mathematics instruction. Mathematical tutoring practicum is required. Four credit hour course offered over a two quarter span during the autumn and winter quarters only. See instructor for further information. This course maybe used to satisfy the junior experiential learning requirement, but it does not count toward mathematics major or minor credit. Cross-listed with MAT 697.

MAT 398 SENIOR CAPSTONE SEMINAR
Topics vary from year to year. This course does not count toward the mathematical major or minor credit. Prerequisites: MAT 215 (or MAT 140 and 141) and MAT 262, or instructor permission.

MAT 399 INDEPENDENT STUDY
Variable credit.

*Red = Core Course
*Purple = Statistics Course
Prerequisite Chart (Mathematics Concentrations*)

*Charts do not indicate all possible prerequisite links—only those associated with concentrations in the major.
Prerequisite Chart (Statistics Concentrations*)
Full-Time Faculty

Gary Clark Alexander
Visiting Assistant Professor
773.325.2061, SAC 530D
galexan3@depaul.edu

Enrico Au-Yeung
Assistant Professor
Harmonic Analysis
773.325.1341, SAC 532
eauyeun1@depaul.edu

Allan Berele
Professor
Algebra, Combinatorics
773.325.4217, SAC 528C
aberele@condor.depaul.edu

Jeffrey Bergen
Professor
Algebra
773.325.4218, SAC 528B
jbergen@condor.depaul.edu

William Butterworth
Associate Chair and
Associate Professor
773.325.4227, SAC 573H
wbutterw@depaul.edu

Stefan Catoiu
Associate Professor
Non-Commutative Algebra
773.325.4669, SAC 526
catoiu@condor.depaul.edu

William Chin
Professor
Hopf Algebras,
Representation Theory
773.325.4219, SAC 540
wchin@condor.depaul.edu

David Degras
Assistant Professor
Statistics
773.325.1340, SAC 516
ddegrasv@depaul.edu

Christopher Drupieski
Assistant Professor
Representation Theory
773.325.4221, SAC 539
cdrupies@depaul.edu

Juan Hu
Assistant Professor
Statistics
773.325.1344, SAC 508
jhu23@depaul.edu

Glenn Hughes
Visiting Assistant Professor
773.325.4216, SAC 507
TBA@depaul.edu

Yevgenia Kashina
Associate Professor
Hopf Algebras
773.325.1351, SAC 518
ykashina@depaul.edu

Yiou Li
Visiting Assistant Professor
773.325.2062, SAC 513
yli139@depaul.edu

Karl Liechty
Assistant Professor
Asymptotic Analysis, Probability, Mathematical Physics
773.325.1364, SAC 550
kliechty@depaul.edu

Idris Mercer
Visiting Assistant Professor
773.325.2061, SAC 530D
imercer@depaul.edu

Itir Mogultay
Visiting Assistant Professor
773.325.2062, SAC 513
imogulta@depaul.edu

Carolyn Narasimhan
Director of the STEM Center
773.325.1854
990 W Fullerton, Suite 4410
cnarasim@depaul.edu

Stefanos Orfanos
Visiting Assistant Professor
Operator Algebras
773.325.2061, SAC 530D
sorfanos@depaul.edu

T. Kyle Petersen
Associate Professor
Combinatorics
773.325.1353, SAC 510
tpeter21@depaul.edu

Nicholas Ramsey
Assistant Professor
Number Theory
773.325.4226, SAC 544
nramsey@depaul.edu

Ayse A. Sahin
Professor
Ergodic Theory, Dynamical Systems
773.325.1347, SAC 512
asahin@depaul.edu

Claudia Schmegner
Associate Professor
Statistics
773.325.1342, SAC 514
cschmegn@depaul.edu

Bridget Tenner
Associate Professor
Combinatorics
773.325.4220, SAC 522
btenner@depaul.edu

Ilie Ugarcovici
Associate Professor
Dynamical Systems
773.325.1354, SAC 520
iugarcov@depaul.edu

Gang Wang
Professor
Probability, Statistics, Analysis
773.325.1352, SAC 528
gwang@depaul.edu

Ahmed A. Zayed
Chair and Professor
Applied Harmonic Analysis
773.325.7808, SAC 524
azayed@depaul.edu
Adjunct Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammad Alshaora</td>
<td>malsharo@depaul.edu</td>
</tr>
<tr>
<td>Louis Aquila</td>
<td>laquilaj@yahoo.com</td>
</tr>
<tr>
<td>Byron Bell</td>
<td>bbell16@depaul.edu</td>
</tr>
<tr>
<td>Charles Benson</td>
<td>cbenson@depaul.edu</td>
</tr>
<tr>
<td>Carole Bernett</td>
<td>cbernert1@depaul.edu</td>
</tr>
<tr>
<td>Valerie Bouagnon</td>
<td>valeriebouagnon@hotmail.com</td>
</tr>
<tr>
<td>Melissa Bradford</td>
<td>melissa.bradford@comcast.net</td>
</tr>
<tr>
<td>Joanne Brunner</td>
<td>jbrunner@jjc.edu</td>
</tr>
<tr>
<td>Stanislaw Buchcic</td>
<td>sbuchcic1@depaul.edu</td>
</tr>
<tr>
<td>David Bueller</td>
<td>dbueller@depaul.edu</td>
</tr>
<tr>
<td>Thomas Callahan</td>
<td>tcallah5@depaul.edu</td>
</tr>
<tr>
<td>Serpil Caputlu</td>
<td>ebrar_alpsoy@yahoo.com</td>
</tr>
<tr>
<td>Michael Colvin</td>
<td>mcolvin2@depaul.edu</td>
</tr>
<tr>
<td>Jan Kostenbader</td>
<td>jkostenb@depaul.edu</td>
</tr>
<tr>
<td>Timothy Doyle</td>
<td>tdoyle4@depaul.edu</td>
</tr>
<tr>
<td>Carol Esposito</td>
<td>cesposito@depaul.edu</td>
</tr>
<tr>
<td>Dimitris Garivaltis</td>
<td>garivaltis50@gmail.com</td>
</tr>
<tr>
<td>Andrew Glennon</td>
<td>aglennon123@comcast.net</td>
</tr>
<tr>
<td>Charles Groth</td>
<td>cgroth@depaul.edu</td>
</tr>
<tr>
<td>Safa Hamed</td>
<td>mathlearning@aol.com</td>
</tr>
<tr>
<td>Joseph Hardy</td>
<td>joseph13hardy@gmail.com</td>
</tr>
<tr>
<td>Mofak Hassan</td>
<td>mhassan9@depaul.edu</td>
</tr>
<tr>
<td>Daniel Hayes</td>
<td>hayesstatistics@gmail.com</td>
</tr>
<tr>
<td>Dan Hrozencik</td>
<td>dhrro@att.net</td>
</tr>
<tr>
<td>Yann Ju</td>
<td>yju@depaul.edu</td>
</tr>
<tr>
<td>Zaya Khananu</td>
<td>zkhananu@depaul.edu</td>
</tr>
<tr>
<td>Ron Kuziel</td>
<td>rkuziel@depaul.edu</td>
</tr>
<tr>
<td>Vladimir Lepetic</td>
<td>vlepetic@condor.depaul.edu</td>
</tr>
<tr>
<td>Yiu Li</td>
<td>yli88@iit.edu</td>
</tr>
<tr>
<td>Selma Mehmedagic</td>
<td>smehmeda@depaul.edu</td>
</tr>
<tr>
<td>Dennis Miller</td>
<td>dmilleri@depaul.edu</td>
</tr>
<tr>
<td>Michael Modica</td>
<td>mmodica@depaul.edu</td>
</tr>
<tr>
<td>Rochelle Plager</td>
<td>rplager@depaul.edu</td>
</tr>
<tr>
<td>Linda Potaniec</td>
<td>potaniec@aol.com</td>
</tr>
<tr>
<td>Janice Pranger</td>
<td>jpranger@depaul.edu</td>
</tr>
<tr>
<td>Mary Jo Prusko</td>
<td>maryjo.prusko@bps101.net</td>
</tr>
<tr>
<td>William Qualls</td>
<td>bill_qualls@hotmail.com</td>
</tr>
<tr>
<td>Pervez Rahman</td>
<td>prahman@depaul.edu</td>
</tr>
<tr>
<td>Anne Rogers</td>
<td>arogers1936@gmail.com</td>
</tr>
<tr>
<td>Phillip Schiavone</td>
<td>pschiavo@depaul.edu</td>
</tr>
<tr>
<td>Steven Seidman</td>
<td>sseidma1@depaul.edu</td>
</tr>
<tr>
<td>Abdallah Shuibi</td>
<td>ashuibi@depaul.edu</td>
</tr>
<tr>
<td>Biju Varghese</td>
<td>varghese07@gmail.com</td>
</tr>
<tr>
<td>Marlos Viana</td>
<td>mviana@depaul.edu</td>
</tr>
<tr>
<td>Bidan Zandi</td>
<td>bzandi@depaul.edu</td>
</tr>
<tr>
<td>George Zazi</td>
<td>gzazi@depaul.edu</td>
</tr>
</tbody>
</table>
Quick Connections

Admission Office
312-362-8300

Department of Mathematical Sciences
Schmitt Academic Center 502
2302 North Kenmore Avenue
Chicago, IL 60614-3250
773-325-7806
773-325-7087 (FAX)

Ahmed Zayed
Department Chair
azayed@depaul.edu
773-325-7808

Nydia Rodriguez
Department Assistant
nrodrigu@depaul.edu
773-325-4878

Teresita Gomez
Office Assistant
tgomez@depaul.edu
773-325-7806

Bill Butterworth
Associate Chair
wbutterw@depaul.edu
773-325-4227

Jeffrey Bergen
Director, MAMEd Program

jbergen@depaul.edu
773-325-4218

Carole Bernett
Director, Graduate Applied Mathematics
cbernet1@depaul.edu
773-325-1343

Yevgenia Kashina
Director, Graduate Pure Mathematics
ykashina@depaul.edu
773-325-1351

Ayse Sahin
Co-Director, Middle School Mathematics Education Program
asahin@depaul.edu
773-325-1347

Actuarial Club
depaulactuarialclub@gmail.com

Math Club
depaulmathclub@gmail.com

STATCOM Chicago
statcomchicagodepaul@gmail.com
https://orgsync.com/48609/chapter